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APPENDIX

A. Proof of Theorem 1

Theorem 1. The maximum effective transaction throughput of
the system grows linearly with the number of shards.

Proof. We assume that, on average, each transaction in the
system involves n accounts. For example, in the Ethereum
system, transactions have only one input and one output,
so n = 2. In a blockchain system where transactions are
multiple-input and multiple-output, n can be 2, 3, or more.
The probability that a transaction with n accounts involves m
shards is represented by αm.

All involved shards need to process an effective transaction
once. If a transaction involves m shards, the number of times
the transaction needs to be processed is m. Thus, the expected
number of times an effective transaction needs to be processed
by different shards is

∑n
m=1mαm. If the maximum effective

transaction throughput of the system, or the maximum rate at
which the system can process effective transactions is τ , then
the maximum overall transaction processing rate of the system
is τ

∑n
m=1mαm.

When the system reaches an equilibrium of transaction pro-
cessing supply and demand, the maximum overall transaction
processing rate of the system is equal to the sum of the
maximum overall transaction processing rates of each shard
µ, which is kµ. Thus, we can get the following:

kµ = τ

n∑
m=1

mαm. (9)

Let χi be the random variable where

χi =

{
1, if the transaction involves shard i
0, if the transaction does not involve shard i

(10)

The probability that any account is assigned to shard i is
1
k . Correspondingly, the probability that an account is not
assigned to i is 1− 1

k .
Thus, the probability that a transaction does not involve

shard i is:

P (χi = 0) =

(
1− 1

k

)n
=

(
k − 1

k

)n
. (11)

Correspondingly, the probability that a transaction involves
shard i is:

P (χi = 1) = 1− P (χi = 0) = 1−
(
k − 1

k

)n
. (12)

The expectation is

E(χi) = 0 · P (χi = 0) + 1 · P (χi = 1)

= 1−
(
k − 1

k

)n
.

(13)

Let ξ denote the number of shards processing a transaction
with n accounts.

ξ = χ1 + χ2 + · · ·+ χk. (14)

According to the linearity of expectation,

E(ξ) = E(χ1) + E(χ2) + · · ·+ E(χk)

= k ·
[
1−

(
k − 1

k

)n]
.

(15)

According to the definition of expectation,

E(ξ) =

n∑
m=1

αmm. (16)

Combining Eq. (15) and Eq. (16), we can get

E(ξ) = k ·
[
1−

(
k − 1

k

)n]
=

n∑
m=1

αmm. (17)

Combining Eq. (17) with Eq. (9), we can get

τ =
kµ∑n

m=1 αmm
=

kµ

k ·
[
1−

(
k−1
k

)n]
=

µ

1−
(
k−1
k

)n
=

µkn

kn − (k − 1)n
.

(18)

Because

lim
k→∞

kn − (k − 1)n

nkn−1
= lim
k→∞

kn − kn + nkn−1 + o(kn−1)

nkn−1
= 1,

(19)
combining Eq. (18) and Eq. (19), we can get:

lim
k→∞

µk

nτ
= lim
k→∞

kn − (k − 1)n

nkn−1
= 1. (20)

Therefore, when k →∞, τ ∼ µ
nk.

When the number of shards k is large enough, the
blockchain system that randomly assigns transactions to shards
can also make the effective throughput of the system τ increase
linearly with the number of shards.

B. Proof of Theorem 2

Theorem 2. The average transaction processing latency of
the system decreases as the number of shards increases.

Proof. Effective transactions consist of intra-shard transac-
tions and cross-shard transactions. For a system where ac-
counts are randomly assigned to shards, the probability that a
transaction involving n accounts is an intra-shard transaction
Pin is

Pin =
1

kn−1
. (21)

Correspondingly, the probability that a transaction involving
n accounts is a cross-shard transaction Pcr is

Pcr = 1−
1

kn−1
. (22)

Therefore, the arrival rate of intra-shard transactions λin and
cross-shard transactions λcr in the system are

λin = λPin =
λ

kn−1
,

λcr = λPcr = λ

(
1−

1

kn−1

)
,

(23)
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where λ is the arrival rate of effective transactions in the
system.

We assume that, on average, each transaction in the system
involves n accounts, the number of input shards is s1, and
the number of output shards is s2. Then, the arrival rate of
sub-transactions processed by all input shards is

λsub = s1λcr = s1λ

(
1−

1

kn−1

)
. (24)

When the system attains its statistical equilibrium, the
departure process of a M/M/1 queue is the same Poisson as
the arrival process [25]. Thus, the arrival rate of cross-shard
transactions processed by all output shards is

λcrout = s2λsub = s1s2λ

(
1−

1

kn−1

)
. (25)

Due to the homogeneity assumption of shards, all shards
have the same transaction arrival rate. Each shard is an
M/M/1 queue whose transaction arrival rate is 1

k of the
transaction arrival rate of the total system. An arbitrary
shard i ∈ {1, 2, . . . , k} processes three types of transactions:
intra-shard transactions, cross-shard transactions with input
accounts within the shard, and cross-shard transactions with
output accounts within the shard. Thus, the transaction arrival
rate λ0(k) of a shard is:

λ0(k) =
λin + λsub + λcrout

k

= λ
1

kn
+ λs1(1 + s2)

(
1

k
− 1

kn

)
.

(26)

The growth of λ0 as k grows can be expressed as

λ0(k + 1)− λ0(k)

= λ
− b(k + 1)n−1kn−1 + (b− 1) [(k + 1)n − kn]

(k + 1)nkn
,

(27)

where b = s1(1 + s2) > 0.
As k →∞,

λ0(k + 1)− λ0(k) < 0. (28)

Thus, when k is sufficiently large, λ0 will decrease as k
increases.

According to the property of M/M/1 [25], the expectation
of the transaction processing latency Wp is

Wp =
1

µ− λ0
. (29)

Because
dWp

dλ0
=

1

(µ− λ0)2
> 0, (30)

Wp increases as the transaction arrival rate λ0 increases, and
Wp decreases as λ0 decreases.

Combining this result with the conclusion from Ineq. (28),
we can conclude that when the number of shards k is suf-
ficiently large, the transaction arrival rate λ0 decreases as
k increases, and the transaction processing latency Wp also
decreases.

C. Proof of Theorem 3

Theorem 3. For each epoch with an unbiased and random
committee formation algorithm, as long as β < 1

3 and the
number of validators in the committee n is sufficiently large,
any committee is honest with an overwhelming probability.

Proof. The committee formation algorithm can be modeled
as random sampling. Let X denote a random variable rep-
resenting the number of malicious validators selected in the
committee. The distribution of X follows the hypergeometric
distribution with parameters n,N,M where n is the number
of validators in the committee, N is the total number of
validators, and M = βN is the total number of malicious
validators. The probability that a committee of size n contains
k malicious validators is:

P (X = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) , (31)

where
(
M
k

)
is the binomial coefficient. From the hypergeomet-

ric distribution, the expectation and variance of X are given
by

E(X) = nβ, (32)

V ar(X) =
nM(N − n)(N −M)

N2(N − 1)
= nβ(1− β)N − n

N − 1
.

(33)
The probability pA

C that the number of malicious validators
exceeds 1

3 of the total number of validators in the committee
is:

pA
C = P (X ≥ 1

3
n) = P (X − βn ≥ n(1

3
− β)). (34)

According to Chebyshev’s inequality,

P (X − βn ≥ n(1
3
− β)) ≤

nβ(1− β)N−nN−1

n2( 13 − β)2
(35)

=
β(1− β)

( 13 − β)2(N − 1)
(
N

n
− 1).

(36)

Given η > 0, n0 =

⌈
N

( 1
3−β

)2η

β(1−β)
+1

⌉
, for any n ≥ n0, Ineq.

(35) satisfies:

P (X − βn ≥ n(1
3
− β)) ≤ β(1− β)

( 13 − β)2(N − 1)
(
N

n
− 1)

(37)

≤ β(1− β)
( 13 − β)2(N − 1)

(
N

n0
− 1)

(38)
≤ η. (39)

Combining Ineq.(34), Ineq.(35) and Ineq. (37), we have
pA
C ≤ η, which means that the probability that the number

of malicious validators exceeds 1
3 of the total number of

validators in the committee is less than η. Therefore, the
committee is honest as long as β < 1

3 and the number of
validators in the committee n is sufficiently large.


